分布式高并发的处理方法有哪些?极悦小编来告诉大家处理高并发的六种方法。
1.系统拆分,将一个系统拆分为多个子系统,用dubbo来搞。然后每个系统连一个数据库,这样本来就一个库,现在多个数据库,这样就可以抗高并发。
2.缓存,必须得用缓存。大部分的高并发场景,都是读多写少,那你完全可以在数据库和缓存里都写一份,然后读的时候大量走缓存不就得了。毕竟人家redis轻轻松松单机几万的并发啊。没问题的。所以你可以考的虑考虑你的项目里,那些承载主要请求读场景,怎么用缓存来抗高并发。
3.MQ(消息队列),必须得用MQ。可能你还是会出现高并发写的场景,比如说一个业务操作里要频繁搞数据库几十次,增删改增删改,疯了。那高并发绝对搞挂你的系统,人家是缓存你要是用redis来承载写那肯定不行,数据随时就被LRU(淘汰掉最不经常使用的)了,数据格式还无比简单,没有事务支持。所以该用mysql还得用mysql啊。那你咋办?用MQ吧,大量的写请求灌入MQ里,排队慢慢玩儿,后边系统消费后慢慢写,控制在mysql承载范围之内。所以你得考虑考虑你的项目里,那些承载复杂写业务逻辑的场景里,如何用MQ来异步写,提升并发性。MQ单机抗几万并发也是ok的。
4.分库分表,可能到了最后数据库层面还是免不了抗高并发的要求,好吧,那么就将一个数据库拆分为多个库,多个库来抗更高的并发;然后将一个表拆分为多个表,每个表的数据量保持少一点,提高sql跑的性能。
5.读写分离,这个就是说大部分时候数据库可能也是读多写少,没必要所有请求都集中在一个库上吧,可以搞个主从架构,主库写入,从库读取,搞一个读写分离。读流量太多的时候,还可以加更多的从库。
6.solrCloud:
SolrCloud(solr 云)是Solr提供的分布式搜索方案,可以解决海量数据的 分布式全文检索,因为搭建了集群,因此具备高可用的特性,同时对数据进行主从备份,避免了单点故障问题。可以做到数据的快速恢复。并且可以动态的添加新的节点,再对数据进行平衡,可以做到负载均衡:
以上就是关于“分布式高并发的处理方法”介绍,大家如果想了解更多相关知识,不妨来关注一下极悦的Java极悦在线学习,里面的课程内容从入门到精通,细致全面,比较适合没有基础的小伙伴学习,希望对大家能够有所帮助哦。
你适合学Java吗?4大专业测评方法
代码逻辑 吸收能力 技术学习能力 综合素质
先测评确定适合在学习