简述数据结构中7种树 - 极悦
首页 课程 师资 教程 报名

简述数据结构中7种树

  • 2021-02-02 17:16:16
  • 1297次 极悦

树是一种特殊的数据结构,它是由n(n>=1)个有限结点组成一个具有层次关系的集合。把它叫做“树”是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。树的特点就是树的每个结点有零个或多个子结点;没有父结点的结点称为根结点;每一个非根结点有且只有一个父结点;除了根结点外,每个子结点可以分为多个不相交的子树。这些只是树的基本特性,有一些特殊的树本身还有一些和其他树不一样的特性,本文我们就来为大家介绍数据结构中7种树

1. 二叉树

二叉树是数据结构中一种重要的数据结构,也是树表家族最为基础的结构。

二叉树的定义:二叉树的每个结点至多只有二棵子树(不存在度大于2的结点),二叉树的子树有左右之分,次序不能颠倒。二叉树的第i层至多有2i-1个结点;深度为k的二叉树至多有2k-1个结点;对任何一棵二叉树T,如果其终端结点数为n0,度为2的结点数为n2,则n0=n2+1。

2. 二叉查找树

二叉查找树定义:又称为是二叉排序树(Binary Sort Tree)或二叉搜索树。二叉排序树或者是一棵空树,或者是具有下列性质的二叉树:

1) 若左子树不空,则左子树上所有结点的值均小于它的根结点的值;

2) 若右子树不空,则右子树上所有结点的值均大于或等于它的根结点的值;

3) 左、右子树也分别为二叉排序树;

4) 没有键值相等的节点。

二叉查找树的性质:对二叉查找树进行中序遍历,即可得到有序的数列。

二叉查找树的时间复杂度:它和二分查找一样,插入和查找的时间复杂度均为O(logn),但是在最坏的情况下仍然会有O(n)的时间复杂度。原因在于插入和删除元素的时候,树没有保持平衡。

3. 平衡二叉树

平衡二叉树定义:平衡二叉树(Balanced Binary Tree)又被称为AVL树(有别于AVL算法),且具有以下性质:它是一 棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树。平衡二叉树的常用算法有红黑树、AVL树等。在平衡二叉搜索树中,我们可以看到,其高度一般都良好地维持在O(log2n),大大降低了操作的时间复杂度。

4. B树

B树也是一种用于查找的平衡树,但是它不是二叉树。

B树的定义:B树(B-tree)是一种树状数据结构,能够用来存储排序后的数据。这种数据结构能够让查找数据、循序存取、插入数据及删除的动作,都在对数时间内完成。B树,概括来说是一个一般化的二叉查找树,可以拥有多于2个子节点。与自平衡二叉查找树不同,B-树为系统最优化大块数据的读和写操作。B-tree算法减少定位记录时所经历的中间过程,从而加快存取速度。这种数据结构常被应用在数据库和文件系统的实作上。

5. B+树

B+树是B树的变体,也是一种多路搜索树:

1) 其定义基本与B-树相同,除了:

2) 非叶子结点的子树指针与关键字个数相同;

3) 非叶子结点的子树指针P[i],指向关键字值属于[K[i], K[i+1])的子树(B-树是开区间);

4) 为所有叶子结点增加一个链指针;

5)所有关键字都在叶子结点出现;

6. B*树

B*树是B+树的变体,在B+树的非根和非叶子结点再增加指向兄弟的指针,将结点的最低利用率从1/2提高到2/3。

B*树定义了非叶子结点关键字个数至少为(2/3)*M,即块的最低使用率为2/3(代替B+树的1/2);

7. Trie树

Tire树称为字典树,又称单词查找树,Trie树,是一种树形结构,是一种哈希树的变种。典型应用是用于统计,排序和保存大量的字符串(但不仅限于字符串),所以经常被搜索引擎系统用于文本词频统计。它的优点是:利用字符串的公共前缀来减少查询时间,最大限度地减少无谓的字符串比较,查询效率比哈希树高。 

Tire树的三个基本性质:

1) 根节点不包含字符,除根节点外每一个节点都只包含一个字符;

2) 从根节点到某一节点,路径上经过的字符连接起来,为该节点对应的字符串;

3) 每个节点的所有子节点包含的字符都不相同。

以上就是数据结构中7种树,当然,在这里我们只是简单介绍了这数据结构中7种树的定义和性质,但是要真正意义上掌握数据结构中7种树,必须还有学习它们的数据结构,利用图像表示法画出正确的树的结构图。在本站的数据结构和算法教程中有这些树的概述图,方便我们更好的理解它们的数据结构和性质。

 

选你想看

你适合学Java吗?4大专业测评方法

代码逻辑 吸收能力 技术学习能力 综合素质

先测评确定适合在学习

在线申请免费测试名额
价值1998元实验班免费学
姓名
手机
提交